Properties

Label 5.2e12_7e4.6t14.1
Dimension 5
Group $S_5$
Conductor $ 2^{12} \cdot 7^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$9834496= 2^{12} \cdot 7^{4} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 8 x^{3} - 4 x^{2} + 6 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 33 a + 16 + \left(53 a + 50\right)\cdot 61 + \left(13 a + 11\right)\cdot 61^{2} + \left(54 a + 13\right)\cdot 61^{3} + \left(6 a + 13\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 31 a + 46 + \left(45 a + 9\right)\cdot 61 + \left(44 a + 6\right)\cdot 61^{2} + \left(6 a + 7\right)\cdot 61^{3} + \left(18 a + 24\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 57 + 27\cdot 61 + 4\cdot 61^{2} + 18\cdot 61^{3} + 22\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 28 a + 49 + \left(7 a + 9\right)\cdot 61 + \left(47 a + 33\right)\cdot 61^{2} + \left(6 a + 53\right)\cdot 61^{3} + \left(54 a + 26\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 30 a + 16 + \left(15 a + 24\right)\cdot 61 + \left(16 a + 5\right)\cdot 61^{2} + \left(54 a + 30\right)\cdot 61^{3} + \left(42 a + 35\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,2)$ $-1$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$30$ $4$ $(1,2,3,4)$ $1$
$24$ $5$ $(1,2,3,4,5)$ $0$
$20$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.