Properties

Label 5.2e12_3e2_7e4.12t183.1c1
Dimension 5
Group $S_6$
Conductor $ 2^{12} \cdot 3^{2} \cdot 7^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$88510464= 2^{12} \cdot 3^{2} \cdot 7^{4} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 4 x^{4} - 8 x^{3} + 2 x^{2} + 24 x - 20 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T183
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 193 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 193 }$: $ x^{2} + 192 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 72 a + 150 + \left(125 a + 111\right)\cdot 193 + \left(136 a + 152\right)\cdot 193^{2} + \left(142 a + 150\right)\cdot 193^{3} + \left(28 a + 76\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 143 a + 31 + \left(136 a + 42\right)\cdot 193 + \left(66 a + 90\right)\cdot 193^{2} + \left(191 a + 105\right)\cdot 193^{3} + \left(171 a + 181\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 35 + 33\cdot 193 + 130\cdot 193^{2} + 193^{3} + 48\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 121 a + 29 + \left(67 a + 165\right)\cdot 193 + \left(56 a + 163\right)\cdot 193^{2} + \left(50 a + 156\right)\cdot 193^{3} + \left(164 a + 155\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 50 a + 174 + \left(56 a + 35\right)\cdot 193 + \left(126 a + 20\right)\cdot 193^{2} + \left(a + 37\right)\cdot 193^{3} + \left(21 a + 162\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 162 + 190\cdot 193 + 21\cdot 193^{2} + 127\cdot 193^{3} + 147\cdot 193^{4} +O\left(193^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)(5,6)$$1$
$15$$2$$(1,2)$$-3$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$-1$
$40$$3$$(1,2,3)$$2$
$90$$4$$(1,2,3,4)(5,6)$$-1$
$90$$4$$(1,2,3,4)$$-1$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$1$
$120$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.