Properties

Label 5.2e12_3e10.12t183.5c1
Dimension 5
Group $S_6$
Conductor $ 2^{12} \cdot 3^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$241864704= 2^{12} \cdot 3^{10} $
Artin number field: Splitting field of $f= x^{6} - 12 x^{3} + 27 x^{2} - 18 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T183
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{2} + 96 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 66 a + 83 + \left(42 a + 10\right)\cdot 97 + \left(45 a + 53\right)\cdot 97^{2} + \left(38 a + 30\right)\cdot 97^{3} + \left(58 a + 27\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 50 + 95\cdot 97 + 93\cdot 97^{2} + 18\cdot 97^{3} + 33\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 31 a + 52 + \left(54 a + 84\right)\cdot 97 + \left(51 a + 55\right)\cdot 97^{2} + \left(58 a + 23\right)\cdot 97^{3} + \left(38 a + 47\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 a + 83 + \left(23 a + 29\right)\cdot 97 + \left(21 a + 27\right)\cdot 97^{2} + \left(16 a + 56\right)\cdot 97^{3} + \left(85 a + 71\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 78 a + 5 + \left(73 a + 34\right)\cdot 97 + \left(75 a + 25\right)\cdot 97^{2} + \left(80 a + 51\right)\cdot 97^{3} + \left(11 a + 43\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 18 + 36\cdot 97 + 35\cdot 97^{2} + 13\cdot 97^{3} + 68\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)(5,6)$$1$
$15$$2$$(1,2)$$-3$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$-1$
$40$$3$$(1,2,3)$$2$
$90$$4$$(1,2,3,4)(5,6)$$-1$
$90$$4$$(1,2,3,4)$$-1$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$1$
$120$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.