Properties

Label 5.2e11_5e5.6t16.6c1
Dimension 5
Group $S_6$
Conductor $ 2^{11} \cdot 5^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$6400000= 2^{11} \cdot 5^{5} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 5 x^{4} - 5 x^{2} + 10 x - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_6$
Parity: Even
Determinant: 1.2e3_5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 193 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 193 }$: $ x^{2} + 192 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 33 a + 17 + \left(181 a + 9\right)\cdot 193 + \left(57 a + 51\right)\cdot 193^{2} + \left(26 a + 151\right)\cdot 193^{3} + \left(159 a + 52\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 161 a + 78 + \left(5 a + 112\right)\cdot 193 + \left(5 a + 104\right)\cdot 193^{2} + \left(68 a + 160\right)\cdot 193^{3} + \left(143 a + 192\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 142 a + 124 + \left(91 a + 3\right)\cdot 193 + \left(145 a + 169\right)\cdot 193^{2} + \left(15 a + 26\right)\cdot 193^{3} + \left(74 a + 7\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 160 a + 50 + \left(11 a + 157\right)\cdot 193 + \left(135 a + 120\right)\cdot 193^{2} + \left(166 a + 119\right)\cdot 193^{3} + \left(33 a + 185\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 32 a + 46 + \left(187 a + 150\right)\cdot 193 + \left(187 a + 103\right)\cdot 193^{2} + \left(124 a + 30\right)\cdot 193^{3} + \left(49 a + 75\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 51 a + 73 + \left(101 a + 146\right)\cdot 193 + \left(47 a + 29\right)\cdot 193^{2} + \left(177 a + 90\right)\cdot 193^{3} + \left(118 a + 65\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)(5,6)$$3$
$15$$2$$(1,2)$$-1$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$2$
$40$$3$$(1,2,3)$$-1$
$90$$4$$(1,2,3,4)(5,6)$$-1$
$90$$4$$(1,2,3,4)$$1$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$0$
$120$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.