Properties

Label 5.2e11_43e2.6t14.2
Dimension 5
Group $\PGL(2,5)$
Conductor $ 2^{11} \cdot 43^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$\PGL(2,5)$
Conductor:$3786752= 2^{11} \cdot 43^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 3 x^{4} - 4 x^{3} + 2 x^{2} - 6 x + 10 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{2} + 96 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 42 a + 29 + \left(5 a + 10\right)\cdot 97 + \left(37 a + 49\right)\cdot 97^{2} + \left(77 a + 79\right)\cdot 97^{3} + \left(52 a + 66\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 58 + 39\cdot 97 + 27\cdot 97^{2} + 33\cdot 97^{3} + 36\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 30 a + 10 + \left(80 a + 84\right)\cdot 97 + \left(63 a + 36\right)\cdot 97^{2} + \left(66 a + 71\right)\cdot 97^{3} + \left(87 a + 64\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 55 a + 71 + \left(91 a + 70\right)\cdot 97 + \left(59 a + 80\right)\cdot 97^{2} + \left(19 a + 22\right)\cdot 97^{3} + \left(44 a + 42\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 84 + 48\cdot 97 + 76\cdot 97^{2} + 9\cdot 97^{3} + 92\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 67 a + 40 + \left(16 a + 37\right)\cdot 97 + \left(33 a + 20\right)\cdot 97^{2} + \left(30 a + 74\right)\cdot 97^{3} + \left(9 a + 85\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)(2,5)(3,4)$
$(1,3,4,5,6,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,6)(2,5)(3,4)$ $-1$
$15$ $2$ $(1,4)(3,6)$ $1$
$20$ $3$ $(1,6,4)(2,5,3)$ $-1$
$30$ $4$ $(1,5,3,4)$ $1$
$24$ $5$ $(1,2,6,3,5)$ $0$
$20$ $6$ $(1,2,6,5,4,3)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.