Properties

Label 5.2725888.6t14.b.a
Dimension $5$
Group $\PGL(2,5)$
Conductor $2725888$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $5$
Group: $\PGL(2,5)$
Conductor: \(2725888\)\(\medspace = 2^{11} \cdot 11^{3} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.2.2725888.5
Galois orbit size: $1$
Smallest permutation container: $\PGL(2,5)$
Parity: even
Determinant: 1.88.2t1.a.a
Projective image: $S_5$
Projective stem field: Galois closure of 6.2.2725888.5

Defining polynomial

$f(x)$$=$ \( x^{6} - x^{5} - x^{4} + 2x^{3} - 5x^{2} - x - 3 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: \( x^{2} + 78x + 3 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 70 a + 77 + \left(17 a + 58\right)\cdot 79 + \left(31 a + 63\right)\cdot 79^{2} + \left(a + 15\right)\cdot 79^{3} + \left(36 a + 54\right)\cdot 79^{4} +O(79^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 9 a + 68 + \left(61 a + 6\right)\cdot 79 + \left(47 a + 77\right)\cdot 79^{2} + \left(77 a + 64\right)\cdot 79^{3} + \left(42 a + 9\right)\cdot 79^{4} +O(79^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 70 + 52\cdot 79 + 71\cdot 79^{2} + 77\cdot 79^{3} + 49\cdot 79^{4} +O(79^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 21 a + 49 + \left(29 a + 64\right)\cdot 79 + \left(a + 10\right)\cdot 79^{2} + \left(40 a + 50\right)\cdot 79^{3} + \left(60 a + 66\right)\cdot 79^{4} +O(79^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 62 + 59\cdot 79 + 30\cdot 79^{2} + 18\cdot 79^{3} + 48\cdot 79^{4} +O(79^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 58 a + 70 + \left(49 a + 72\right)\cdot 79 + \left(77 a + 61\right)\cdot 79^{2} + \left(38 a + 9\right)\cdot 79^{3} + \left(18 a + 8\right)\cdot 79^{4} +O(79^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,2,4,5,6)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$5$
$10$$2$$(1,2)(3,6)(4,5)$$-1$
$15$$2$$(1,4)(2,5)$$1$
$20$$3$$(1,5,2)(3,6,4)$$-1$
$30$$4$$(2,6,4,5)$$1$
$24$$5$$(1,4,6,2,3)$$0$
$20$$6$$(1,6,5,4,2,3)$$-1$