Properties

Label 5.2e11_11e3.6t14.2c1
Dimension 5
Group $S_5$
Conductor $ 2^{11} \cdot 11^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$2725888= 2^{11} \cdot 11^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 8 x^{2} + 2 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Even
Determinant: 1.2e3_11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 359 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 79 + 247\cdot 359 + 267\cdot 359^{2} + 339\cdot 359^{3} + 342\cdot 359^{4} +O\left(359^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 81 + 335\cdot 359 + 95\cdot 359^{2} + 98\cdot 359^{3} + 281\cdot 359^{4} +O\left(359^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 125 + 128\cdot 359 + 9\cdot 359^{2} + 319\cdot 359^{3} + 352\cdot 359^{4} +O\left(359^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 145 + 121\cdot 359 + 226\cdot 359^{2} + 175\cdot 359^{3} + 278\cdot 359^{4} +O\left(359^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 290 + 244\cdot 359 + 118\cdot 359^{2} + 144\cdot 359^{3} + 180\cdot 359^{4} +O\left(359^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$-1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.