Properties

Label 5.2e10_3e4_5e3.6t14.2
Dimension 5
Group $\PGL(2,5)$
Conductor $ 2^{10} \cdot 3^{4} \cdot 5^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$\PGL(2,5)$
Conductor:$10368000= 2^{10} \cdot 3^{4} \cdot 5^{3} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 4 x^{4} - 4 x^{3} + 2 x^{2} - 4 x - 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{3} + x + 28 $
Roots:
$r_{ 1 }$ $=$ $ 16 a^{2} + \left(15 a^{2} + 29 a + 18\right)\cdot 31 + \left(7 a^{2} + 26 a + 9\right)\cdot 31^{2} + \left(17 a^{2} + 18\right)\cdot 31^{3} + \left(13 a^{2} + 26 a + 11\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 a^{2} + 16 a + 26 + \left(19 a^{2} + 28 a + 20\right)\cdot 31 + \left(4 a^{2} + 15 a + 7\right)\cdot 31^{2} + \left(14 a^{2} + 26 a + 16\right)\cdot 31^{3} + \left(15 a^{2} + 23 a + 2\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 a^{2} + 7 a + 19 + \left(a^{2} + 26 a + 24\right)\cdot 31 + \left(27 a^{2} + 14 a + 23\right)\cdot 31^{2} + \left(30 a^{2} + 24 a + 13\right)\cdot 31^{3} + \left(22 a^{2} + 23 a + 2\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 a^{2} + 15 a + 4 + \left(26 a^{2} + 4 a + 15\right)\cdot 31 + \left(18 a^{2} + 19 a + 27\right)\cdot 31^{2} + \left(30 a^{2} + 3 a + 16\right)\cdot 31^{3} + \left(a^{2} + 12 a + 24\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 20 a^{2} + 30 a + 4 + \left(3 a^{2} + 27 a + 5\right)\cdot 31 + \left(13 a^{2} + 10 a + 4\right)\cdot 31^{2} + \left(2 a^{2} + 17 a + 5\right)\cdot 31^{3} + \left(30 a^{2} + 6 a + 7\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 15 a^{2} + 25 a + 11 + \left(25 a^{2} + 7 a + 9\right)\cdot 31 + \left(21 a^{2} + 5 a + 20\right)\cdot 31^{2} + \left(28 a^{2} + 20 a + 22\right)\cdot 31^{3} + \left(8 a^{2} + 13\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)(3,4)$
$(1,5,6,3,2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,5)(2,6)(3,4)$ $-1$
$15$ $2$ $(1,5)(3,6)$ $1$
$20$ $3$ $(1,6,2)(3,4,5)$ $-1$
$30$ $4$ $(1,3,5,6)$ $1$
$24$ $5$ $(2,5,4,6,3)$ $0$
$20$ $6$ $(1,5,6,3,2,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.