Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 10 + 48\cdot 67 + 24\cdot 67^{2} + 2\cdot 67^{3} + 4\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 16 a + 55 + \left(9 a + 39\right)\cdot 67 + \left(16 a + 44\right)\cdot 67^{2} + \left(38 a + 64\right)\cdot 67^{3} + \left(13 a + 39\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 51 a + 52 + \left(57 a + 60\right)\cdot 67 + \left(50 a + 32\right)\cdot 67^{2} + 28 a\cdot 67^{3} + \left(53 a + 56\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 44 + 48\cdot 67 + 30\cdot 67^{2} + 36\cdot 67^{3} + 54\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 42 + 3\cdot 67 + 67^{2} + 30\cdot 67^{3} + 46\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$5$ |
| $10$ |
$2$ |
$(1,2)$ |
$1$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$1$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$-1$ |
| $30$ |
$4$ |
$(1,2,3,4)$ |
$-1$ |
| $24$ |
$5$ |
$(1,2,3,4,5)$ |
$0$ |
| $20$ |
$6$ |
$(1,2,3)(4,5)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.