Properties

Label 5.60466176.12t183.e.a
Dimension $5$
Group $S_6$
Conductor $60466176$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $5$
Group: $S_6$
Conductor: \(60466176\)\(\medspace = 2^{10} \cdot 3^{10} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.2.120932352.13
Galois orbit size: $1$
Smallest permutation container: 12T183
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $S_6$
Projective stem field: Galois closure of 6.2.120932352.13

Defining polynomial

$f(x)$$=$ \( x^{6} - 6x^{4} - 4x^{3} + 18x^{2} + 12x - 26 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: \( x^{2} + 63x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 18 + 3\cdot 67 + 26\cdot 67^{2} + 39\cdot 67^{3} + 47\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 5 + 44\cdot 67 + 8\cdot 67^{2} + 28\cdot 67^{3} + 20\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 2 a + 62 + \left(55 a + 41\right)\cdot 67 + \left(48 a + 66\right)\cdot 67^{2} + \left(13 a + 23\right)\cdot 67^{3} + \left(42 a + 36\right)\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 65 a + 3 + \left(11 a + 59\right)\cdot 67 + \left(18 a + 5\right)\cdot 67^{2} + \left(53 a + 30\right)\cdot 67^{3} + \left(24 a + 57\right)\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 31 + 53\cdot 67 + 33\cdot 67^{2} + 27\cdot 67^{3} + 10\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 15 + 66\cdot 67 + 59\cdot 67^{2} + 51\cdot 67^{3} + 28\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)(5,6)$$1$
$15$$2$$(1,2)$$-3$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$-1$
$40$$3$$(1,2,3)$$2$
$90$$4$$(1,2,3,4)(5,6)$$-1$
$90$$4$$(1,2,3,4)$$-1$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$1$
$120$$6$$(1,2,3)(4,5)$$0$