Properties

Label 5.2e10_223e3.6t16.1
Dimension 5
Group $S_6$
Conductor $ 2^{10} \cdot 223^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$11355716608= 2^{10} \cdot 223^{3} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 4 x^{3} - 4 x^{2} + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_6$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 191 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 191 }$: $ x^{2} + 190 x + 19 $
Roots:
$r_{ 1 }$ $=$ $ 80 + 69\cdot 191 + 27\cdot 191^{2} + 131\cdot 191^{3} + 20\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 62 a + 39 + \left(113 a + 96\right)\cdot 191 + \left(93 a + 126\right)\cdot 191^{2} + \left(108 a + 17\right)\cdot 191^{3} + \left(80 a + 158\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 45 + 174\cdot 191 + 131\cdot 191^{2} + 2\cdot 191^{3} + 176\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 54 + \left(71 a + 108\right)\cdot 191 + \left(65 a + 188\right)\cdot 191^{2} + \left(5 a + 128\right)\cdot 191^{3} + \left(59 a + 112\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 180 a + 65 + \left(119 a + 168\right)\cdot 191 + \left(125 a + 182\right)\cdot 191^{2} + \left(185 a + 68\right)\cdot 191^{3} + \left(131 a + 166\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 129 a + 101 + \left(77 a + 147\right)\cdot 191 + \left(97 a + 106\right)\cdot 191^{2} + \left(82 a + 32\right)\cdot 191^{3} + \left(110 a + 130\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)(5,6)$ $3$
$15$ $2$ $(1,2)$ $-1$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $2$
$40$ $3$ $(1,2,3)$ $-1$
$90$ $4$ $(1,2,3,4)(5,6)$ $-1$
$90$ $4$ $(1,2,3,4)$ $1$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.