Properties

Label 5.2609e2.6t12.1
Dimension 5
Group $A_5$
Conductor $ 2609^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$A_5$
Conductor:$6806881= 2609^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - x^{3} - 15 x^{2} + 58 x - 24 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,5)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 373 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 24 + 232\cdot 373 + 326\cdot 373^{2} + 159\cdot 373^{3} + 359\cdot 373^{4} +O\left(373^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 135 + 278\cdot 373 + 291\cdot 373^{2} + 36\cdot 373^{3} + 360\cdot 373^{4} +O\left(373^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 267 + 48\cdot 373 + 39\cdot 373^{2} + 214\cdot 373^{3} + 129\cdot 373^{4} +O\left(373^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 347 + 73\cdot 373 + 365\cdot 373^{2} + 37\cdot 373^{3} + 211\cdot 373^{4} +O\left(373^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 348 + 112\cdot 373 + 96\cdot 373^{2} + 297\cdot 373^{3} + 58\cdot 373^{4} +O\left(373^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$12$ $5$ $(1,2,3,4,5)$ $0$
$12$ $5$ $(1,3,4,5,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.