Properties

Label 5.25747.6t16.1
Dimension 5
Group $S_6$
Conductor $ 25747 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$25747 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 2 x^{4} - 2 x^{3} + 3 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 3 a + 14 + \left(20 a + 3\right)\cdot 41 + \left(13 a + 39\right)\cdot 41^{2} + \left(38 a + 40\right)\cdot 41^{3} + \left(16 a + 22\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 + 27\cdot 41 + 29\cdot 41^{2} + 3\cdot 41^{3} + 32\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 35 a + \left(2 a + 30\right)\cdot 41 + \left(38 a + 35\right)\cdot 41^{2} + \left(40 a + 35\right)\cdot 41^{3} + \left(35 a + 25\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 23 + \left(38 a + 3\right)\cdot 41 + \left(2 a + 24\right)\cdot 41^{2} + 38\cdot 41^{3} + \left(5 a + 10\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 + 39\cdot 41 + 16\cdot 41^{2} + 25\cdot 41^{3} + 36\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 38 a + 23 + \left(20 a + 19\right)\cdot 41 + \left(27 a + 18\right)\cdot 41^{2} + \left(2 a + 19\right)\cdot 41^{3} + \left(24 a + 35\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)(5,6)$ $-1$
$15$ $2$ $(1,2)$ $3$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $-1$
$40$ $3$ $(1,2,3)$ $2$
$90$ $4$ $(1,2,3,4)(5,6)$ $-1$
$90$ $4$ $(1,2,3,4)$ $1$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $-1$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.