Properties

Label 5.242467e4.12t183.1
Dimension 5
Group $S_6$
Conductor $ 242467^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$3456293035205179795921= 242467^{4} $
Artin number field: Splitting field of $f= x^{6} - x^{4} - x^{3} - 2 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T183
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 14 + 30\cdot 53 + 11\cdot 53^{2} + 29\cdot 53^{3} + 48\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 41 a + 9 + \left(15 a + 23\right)\cdot 53 + \left(14 a + 44\right)\cdot 53^{2} + 20 a\cdot 53^{3} + \left(28 a + 24\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 49 + 29\cdot 53 + 25\cdot 53^{2} + 18\cdot 53^{3} + 52\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 46 + 5\cdot 53 + 15\cdot 53^{2} + 36\cdot 53^{3} + 41\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 12 a + 14 + \left(37 a + 45\right)\cdot 53 + \left(38 a + 32\right)\cdot 53^{2} + \left(32 a + 14\right)\cdot 53^{3} + \left(24 a + 11\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 + 24\cdot 53 + 29\cdot 53^{2} + 6\cdot 53^{3} + 34\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)(5,6)$ $1$
$15$ $2$ $(1,2)$ $-3$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $-1$
$40$ $3$ $(1,2,3)$ $2$
$90$ $4$ $(1,2,3,4)(5,6)$ $-1$
$90$ $4$ $(1,2,3,4)$ $-1$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $1$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.