Properties

Label 5.2323397e3.6t16.1
Dimension 5
Group $S_6$
Conductor $ 2323397^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$12542100393278691773= 2323397^{3} $
Artin number field: Splitting field of $f= x^{6} - 6 x^{4} + 8 x^{2} - x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_6$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 281 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 281 }$: $ x^{2} + 280 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 72 a + 167 + \left(135 a + 253\right)\cdot 281 + \left(103 a + 256\right)\cdot 281^{2} + \left(260 a + 3\right)\cdot 281^{3} + \left(10 a + 112\right)\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 209 a + 239 + \left(145 a + 35\right)\cdot 281 + \left(177 a + 225\right)\cdot 281^{2} + \left(20 a + 160\right)\cdot 281^{3} + \left(270 a + 143\right)\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 128 + \left(140 a + 132\right)\cdot 281 + \left(128 a + 223\right)\cdot 281^{2} + \left(120 a + 20\right)\cdot 281^{3} + \left(142 a + 238\right)\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 263 a + 146 + \left(140 a + 254\right)\cdot 281 + \left(152 a + 211\right)\cdot 281^{2} + \left(160 a + 12\right)\cdot 281^{3} + \left(138 a + 260\right)\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 33 a + 65 + \left(135 a + 32\right)\cdot 281 + \left(257 a + 42\right)\cdot 281^{2} + \left(195 a + 72\right)\cdot 281^{3} + \left(202 a + 41\right)\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 248 a + 98 + \left(145 a + 134\right)\cdot 281 + \left(23 a + 164\right)\cdot 281^{2} + \left(85 a + 10\right)\cdot 281^{3} + \left(78 a + 48\right)\cdot 281^{4} +O\left(281^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)(5,6)$ $3$
$15$ $2$ $(1,2)$ $-1$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $2$
$40$ $3$ $(1,2,3)$ $-1$
$90$ $4$ $(1,2,3,4)(5,6)$ $-1$
$90$ $4$ $(1,2,3,4)$ $1$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.