Properties

Label 5.21191e2.10t13.1c1
Dimension 5
Group $S_5$
Conductor $ 21191^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$449058481= 21191^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - x^{2} - 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 257 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 112\cdot 257 + 39\cdot 257^{2} + 171\cdot 257^{3} + 199\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 + 213\cdot 257 + 152\cdot 257^{2} + 58\cdot 257^{3} + 44\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 55 + 106\cdot 257 + 180\cdot 257^{2} + 38\cdot 257^{3} + 134\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 181 + 87\cdot 257 + 92\cdot 257^{2} + 133\cdot 257^{3} + 165\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 253 + 251\cdot 257 + 48\cdot 257^{2} + 112\cdot 257^{3} + 227\cdot 257^{4} +O\left(257^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$-1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.