Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 277 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 277 }$: $ x^{2} + 274 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 62 a + 226 + \left(43 a + 116\right)\cdot 277 + \left(152 a + 9\right)\cdot 277^{2} + \left(231 a + 84\right)\cdot 277^{3} + \left(175 a + 85\right)\cdot 277^{4} +O\left(277^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 230 + 135\cdot 277 + 119\cdot 277^{2} + 146\cdot 277^{3} + 55\cdot 277^{4} +O\left(277^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 118 + 184\cdot 277 + 194\cdot 277^{2} + 65\cdot 277^{3} + 153\cdot 277^{4} +O\left(277^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 41 + 146\cdot 277 + 30\cdot 277^{2} + 9\cdot 277^{3} + 24\cdot 277^{4} +O\left(277^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 215 a + 135 + \left(233 a + 184\right)\cdot 277 + \left(124 a + 145\right)\cdot 277^{2} + \left(45 a + 72\right)\cdot 277^{3} + \left(101 a + 104\right)\cdot 277^{4} +O\left(277^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 82 + 63\cdot 277 + 54\cdot 277^{2} + 176\cdot 277^{3} + 131\cdot 277^{4} +O\left(277^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$5$ |
| $15$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$-3$ |
| $15$ |
$2$ |
$(1,2)$ |
$1$ |
| $45$ |
$2$ |
$(1,2)(3,4)$ |
$1$ |
| $40$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$2$ |
| $40$ |
$3$ |
$(1,2,3)$ |
$-1$ |
| $90$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$-1$ |
| $90$ |
$4$ |
$(1,2,3,4)$ |
$-1$ |
| $144$ |
$5$ |
$(1,2,3,4,5)$ |
$0$ |
| $120$ |
$6$ |
$(1,2,3,4,5,6)$ |
$0$ |
| $120$ |
$6$ |
$(1,2,3)(4,5)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.