Basic invariants
| Dimension: | $5$ |
| Group: | $S_6$ |
| Conductor: | \(840243610690147\)\(\medspace = 197^{3} \cdot 479^{3} \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin number field: | Galois closure of 6.4.94363.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $S_6$ |
| Parity: | odd |
| Projective image: | $S_6$ |
| Projective field: | Galois closure of 6.4.94363.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$:
\( x^{2} + 21x + 5 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 2 + 3\cdot 23 + 3\cdot 23^{2} + 18\cdot 23^{3} + 12\cdot 23^{4} +O(23^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 16 a + 11 + \left(21 a + 8\right)\cdot 23 + \left(6 a + 13\right)\cdot 23^{2} + \left(22 a + 21\right)\cdot 23^{3} + \left(8 a + 22\right)\cdot 23^{4} +O(23^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 11 + 18\cdot 23 + 5\cdot 23^{3} + 8\cdot 23^{4} +O(23^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 5 a + 19 + \left(15 a + 11\right)\cdot 23 + \left(15 a + 3\right)\cdot 23^{2} + \left(9 a + 15\right)\cdot 23^{3} + \left(21 a + 9\right)\cdot 23^{4} +O(23^{5})\)
|
| $r_{ 5 }$ | $=$ |
\( 7 a + 20 + \left(a + 12\right)\cdot 23 + \left(16 a + 5\right)\cdot 23^{2} + 13\cdot 23^{3} + \left(14 a + 18\right)\cdot 23^{4} +O(23^{5})\)
|
| $r_{ 6 }$ | $=$ |
\( 18 a + 6 + \left(7 a + 14\right)\cdot 23 + \left(7 a + 19\right)\cdot 23^{2} + \left(13 a + 18\right)\cdot 23^{3} + \left(a + 19\right)\cdot 23^{4} +O(23^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values |
| $c1$ | |||
| $1$ | $1$ | $()$ | $5$ |
| $15$ | $2$ | $(1,2)(3,4)(5,6)$ | $3$ |
| $15$ | $2$ | $(1,2)$ | $-1$ |
| $45$ | $2$ | $(1,2)(3,4)$ | $1$ |
| $40$ | $3$ | $(1,2,3)(4,5,6)$ | $2$ |
| $40$ | $3$ | $(1,2,3)$ | $-1$ |
| $90$ | $4$ | $(1,2,3,4)(5,6)$ | $-1$ |
| $90$ | $4$ | $(1,2,3,4)$ | $1$ |
| $144$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $120$ | $6$ | $(1,2,3,4,5,6)$ | $0$ |
| $120$ | $6$ | $(1,2,3)(4,5)$ | $-1$ |