Properties

Label 5.18839e3.6t14.1
Dimension 5
Group $S_5$
Conductor $ 18839^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$6686110323719= 18839^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 3 x^{2} - x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 25 a + 1 + \left(24 a + 5\right)\cdot 37 + \left(a + 22\right)\cdot 37^{2} + \left(20 a + 12\right)\cdot 37^{3} + \left(12 a + 4\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 + 12\cdot 37 + 15\cdot 37^{2} + 19\cdot 37^{3} + 27\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 27 + \left(12 a + 4\right)\cdot 37 + \left(35 a + 4\right)\cdot 37^{2} + \left(16 a + 17\right)\cdot 37^{3} + \left(24 a + 34\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 + 10\cdot 37 + 14\cdot 37^{2} + 13\cdot 37^{3} + 10\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 + 4\cdot 37 + 18\cdot 37^{2} + 11\cdot 37^{3} + 34\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,2)$ $-1$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$30$ $4$ $(1,2,3,4)$ $1$
$24$ $5$ $(1,2,3,4,5)$ $0$
$20$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.