Properties

Label 5.186037e2.10t13.1c1
Dimension 5
Group $S_5$
Conductor $ 186037^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$34609765369= 186037^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 6 x^{3} + 2 x^{2} + 5 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 3 + 21\cdot 31 + 14\cdot 31^{2} + 28\cdot 31^{3} + 25\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 19 + 24\cdot 31^{2} + 14\cdot 31^{3} + 7\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 23 + \left(12 a + 19\right)\cdot 31 + \left(15 a + 3\right)\cdot 31^{2} + \left(11 a + 25\right)\cdot 31^{3} + \left(6 a + 24\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 4 + 18\cdot 31 + 28\cdot 31^{2} + 22\cdot 31^{3} + 8\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 20 a + 14 + \left(18 a + 2\right)\cdot 31 + \left(15 a + 22\right)\cdot 31^{2} + \left(19 a + 1\right)\cdot 31^{3} + \left(24 a + 26\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$-1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.