Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 109 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 109 }$: $ x^{2} + 108 x + 6 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 97 a + 59 + \left(40 a + 17\right)\cdot 109 + \left(86 a + 40\right)\cdot 109^{2} + \left(2 a + 24\right)\cdot 109^{3} + \left(15 a + 40\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 5 a + 80 + \left(a + 76\right)\cdot 109 + \left(92 a + 36\right)\cdot 109^{2} + \left(3 a + 18\right)\cdot 109^{3} + \left(82 a + 75\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 12 a + 47 + \left(68 a + 70\right)\cdot 109 + \left(22 a + 85\right)\cdot 109^{2} + \left(106 a + 49\right)\cdot 109^{3} + \left(93 a + 52\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 93 a + 37 + \left(33 a + 74\right)\cdot 109 + \left(3 a + 33\right)\cdot 109^{2} + \left(82 a + 58\right)\cdot 109^{3} + \left(51 a + 72\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 104 a + 85 + \left(107 a + 72\right)\cdot 109 + \left(16 a + 18\right)\cdot 109^{2} + \left(105 a + 39\right)\cdot 109^{3} + \left(26 a + 44\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 16 a + 21 + \left(75 a + 15\right)\cdot 109 + \left(105 a + 3\right)\cdot 109^{2} + \left(26 a + 28\right)\cdot 109^{3} + \left(57 a + 42\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$5$ |
| $15$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$3$ |
| $15$ |
$2$ |
$(1,2)$ |
$-1$ |
| $45$ |
$2$ |
$(1,2)(3,4)$ |
$1$ |
| $40$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$2$ |
| $40$ |
$3$ |
$(1,2,3)$ |
$-1$ |
| $90$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$-1$ |
| $90$ |
$4$ |
$(1,2,3,4)$ |
$1$ |
| $144$ |
$5$ |
$(1,2,3,4,5)$ |
$0$ |
| $120$ |
$6$ |
$(1,2,3,4,5,6)$ |
$0$ |
| $120$ |
$6$ |
$(1,2,3)(4,5)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.