Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 25 + 11\cdot 41 + 12\cdot 41^{2} + 37\cdot 41^{3} + 34\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 7 a + 8 + \left(14 a + 2\right)\cdot 41 + \left(38 a + 36\right)\cdot 41^{2} + \left(a + 38\right)\cdot 41^{3} + \left(5 a + 30\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 34 a + 29 + \left(26 a + 37\right)\cdot 41 + \left(2 a + 13\right)\cdot 41^{2} + \left(39 a + 6\right)\cdot 41^{3} + \left(35 a + 3\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 16 a + 28 + \left(13 a + 23\right)\cdot 41 + \left(33 a + 7\right)\cdot 41^{2} + \left(35 a + 24\right)\cdot 41^{3} + \left(21 a + 32\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 25 a + 35 + \left(27 a + 6\right)\cdot 41 + \left(7 a + 12\right)\cdot 41^{2} + \left(5 a + 16\right)\cdot 41^{3} + \left(19 a + 21\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$5$ |
| $10$ |
$2$ |
$(1,2)$ |
$1$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$1$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$-1$ |
| $30$ |
$4$ |
$(1,2,3,4)$ |
$-1$ |
| $24$ |
$5$ |
$(1,2,3,4,5)$ |
$0$ |
| $20$ |
$6$ |
$(1,2,3)(4,5)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.