Properties

Label 5.179e3_359e3.6t14.1
Dimension 5
Group $S_5$
Conductor $ 179^{3} \cdot 359^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$265364265011581= 179^{3} \cdot 359^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 5 x^{3} - 2 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 113 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 30 + 20\cdot 113 + 5\cdot 113^{2} + 28\cdot 113^{3} + 34\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 36 + 78\cdot 113 + 55\cdot 113^{2} + 83\cdot 113^{3} + 88\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 68 + 98\cdot 113 + 51\cdot 113^{2} + 23\cdot 113^{3} + 65\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 96 + 2\cdot 113 + 102\cdot 113^{2} + 101\cdot 113^{3} + 19\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 111 + 25\cdot 113 + 11\cdot 113^{2} + 102\cdot 113^{3} + 17\cdot 113^{4} +O\left(113^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,2)$ $-1$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$30$ $4$ $(1,2,3,4)$ $1$
$24$ $5$ $(1,2,3,4,5)$ $0$
$20$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.