Properties

Label 5.17923019113.6t14.b
Dimension $5$
Group $S_5$
Conductor $17923019113$
Indicator $1$

Related objects

Learn more

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:\(17923019113\)\(\medspace = 2617^{3}\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 5.1.2617.1
Galois orbit size: $1$
Smallest permutation container: $\PGL(2,5)$
Parity: even
Projective image: $S_5$
Projective field: 5.1.2617.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: \(x^{2} + 24 x + 2\)  Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 11 a + 13 + \left(16 a + 17\right)\cdot 29 + \left(12 a + 18\right)\cdot 29^{2} + \left(21 a + 28\right)\cdot 29^{3} + \left(4 a + 19\right)\cdot 29^{4} +O(29^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 18 a + 10 + \left(12 a + 1\right)\cdot 29 + \left(16 a + 7\right)\cdot 29^{2} + \left(7 a + 7\right)\cdot 29^{3} + \left(24 a + 22\right)\cdot 29^{4} +O(29^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 20 a + 20 + \left(10 a + 21\right)\cdot 29 + \left(27 a + 26\right)\cdot 29^{2} + \left(10 a + 10\right)\cdot 29^{3} + \left(14 a + 27\right)\cdot 29^{4} +O(29^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 9 a + 4 + \left(18 a + 26\right)\cdot 29 + \left(a + 7\right)\cdot 29^{2} + \left(18 a + 9\right)\cdot 29^{3} + \left(14 a + 1\right)\cdot 29^{4} +O(29^{5})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 11 + 20\cdot 29 + 26\cdot 29^{2} + 29^{3} + 16\cdot 29^{4} +O(29^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,2)$ $-1$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$30$ $4$ $(1,2,3,4)$ $1$
$24$ $5$ $(1,2,3,4,5)$ $0$
$20$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.