Properties

Label 5.1733e2.6t12.1
Dimension 5
Group $A_5$
Conductor $ 1733^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$A_5$
Conductor:$3003289= 1733^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 3 x^{3} - 3 x^{2} + 16 x - 11 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,5)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 557 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 70 + 323\cdot 557 + 459\cdot 557^{2} + 454\cdot 557^{3} + 448\cdot 557^{4} +O\left(557^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 249 + 269\cdot 557 + 134\cdot 557^{2} + 323\cdot 557^{3} + 266\cdot 557^{4} +O\left(557^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 386 + 362\cdot 557 + 85\cdot 557^{2} + 548\cdot 557^{3} + 336\cdot 557^{4} +O\left(557^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 482 + 189\cdot 557 + 112\cdot 557^{2} + 358\cdot 557^{3} + 44\cdot 557^{4} +O\left(557^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 485 + 525\cdot 557 + 321\cdot 557^{2} + 543\cdot 557^{3} + 16\cdot 557^{4} +O\left(557^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$12$ $5$ $(1,2,3,4,5)$ $0$
$12$ $5$ $(1,3,4,5,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.