Properties

Label 5.13e4_16519e4.12t183.1
Dimension 5
Group $S_6$
Conductor $ 13^{4} \cdot 16519^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$2126710728473168932081= 13^{4} \cdot 16519^{4} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 3 x^{4} + 4 x^{3} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T183
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 167 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 167 }$: $ x^{2} + 166 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 68 a + 61 + \left(110 a + 91\right)\cdot 167 + \left(126 a + 83\right)\cdot 167^{2} + \left(106 a + 4\right)\cdot 167^{3} + \left(62 a + 10\right)\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 130 a + 13 + \left(39 a + 13\right)\cdot 167 + \left(53 a + 134\right)\cdot 167^{2} + 134 a\cdot 167^{3} + \left(113 a + 40\right)\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 99 a + 129 + \left(56 a + 133\right)\cdot 167 + \left(40 a + 99\right)\cdot 167^{2} + \left(60 a + 151\right)\cdot 167^{3} + \left(104 a + 132\right)\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 42 a + 57 + \left(144 a + 35\right)\cdot 167 + \left(117 a + 31\right)\cdot 167^{2} + \left(5 a + 20\right)\cdot 167^{3} + \left(54 a + 125\right)\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 125 a + 99 + \left(22 a + 137\right)\cdot 167 + \left(49 a + 4\right)\cdot 167^{2} + \left(161 a + 75\right)\cdot 167^{3} + \left(112 a + 6\right)\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 37 a + 143 + \left(127 a + 89\right)\cdot 167 + \left(113 a + 147\right)\cdot 167^{2} + \left(32 a + 81\right)\cdot 167^{3} + \left(53 a + 19\right)\cdot 167^{4} +O\left(167^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)(5,6)$ $1$
$15$ $2$ $(1,2)$ $-3$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $-1$
$40$ $3$ $(1,2,3)$ $2$
$90$ $4$ $(1,2,3,4)(5,6)$ $-1$
$90$ $4$ $(1,2,3,4)$ $-1$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $1$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.