Properties

Label 5.13e3_11093e3.6t14.1
Dimension 5
Group $S_5$
Conductor $ 13^{3} \cdot 11093^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$2999004351321329= 13^{3} \cdot 11093^{3} $
Artin number field: Splitting field of $f= x^{5} - 6 x^{3} - x^{2} + 6 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 227 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 56 + 72\cdot 227 + 161\cdot 227^{2} + 128\cdot 227^{3} + 144\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 119 + 145\cdot 227 + 138\cdot 227^{2} + 152\cdot 227^{3} + 139\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 129 + 142\cdot 227 + 97\cdot 227^{2} + 103\cdot 227^{3} + 59\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 154 + 225\cdot 227 + 147\cdot 227^{2} + 225\cdot 227^{3} + 35\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 223 + 94\cdot 227 + 135\cdot 227^{2} + 70\cdot 227^{3} + 74\cdot 227^{4} +O\left(227^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,2)$ $-1$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$30$ $4$ $(1,2,3,4)$ $1$
$24$ $5$ $(1,2,3,4,5)$ $0$
$20$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.