Properties

Label 5.137e3_163e3.6t14.1c1
Dimension 5
Group $S_5$
Conductor $ 137^{3} \cdot 163^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$11135879290691= 137^{3} \cdot 163^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 4 x^{2} - x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Odd
Determinant: 1.137_163.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 401 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 121 + 389\cdot 401 + 207\cdot 401^{2} + 292\cdot 401^{3} + 341\cdot 401^{4} +O\left(401^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 124 + 372\cdot 401 + 344\cdot 401^{2} + 74\cdot 401^{3} + 397\cdot 401^{4} +O\left(401^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 129 + 144\cdot 401 + 132\cdot 401^{2} + 193\cdot 401^{3} + 60\cdot 401^{4} +O\left(401^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 183 + 354\cdot 401 + 218\cdot 401^{2} + 41\cdot 401^{3} + 71\cdot 401^{4} +O\left(401^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 247 + 343\cdot 401 + 298\cdot 401^{2} + 199\cdot 401^{3} + 332\cdot 401^{4} +O\left(401^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$-1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.