Properties

Label 5.137e2_163e2.10t13.1
Dimension 5
Group $S_5$
Conductor $ 137^{2} \cdot 163^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$498673561= 137^{2} \cdot 163^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 4 x^{2} - x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 401 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 121 + 389\cdot 401 + 207\cdot 401^{2} + 292\cdot 401^{3} + 341\cdot 401^{4} +O\left(401^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 124 + 372\cdot 401 + 344\cdot 401^{2} + 74\cdot 401^{3} + 397\cdot 401^{4} +O\left(401^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 129 + 144\cdot 401 + 132\cdot 401^{2} + 193\cdot 401^{3} + 60\cdot 401^{4} +O\left(401^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 183 + 354\cdot 401 + 218\cdot 401^{2} + 41\cdot 401^{3} + 71\cdot 401^{4} +O\left(401^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 247 + 343\cdot 401 + 298\cdot 401^{2} + 199\cdot 401^{3} + 332\cdot 401^{4} +O\left(401^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,2)$ $1$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$30$ $4$ $(1,2,3,4)$ $-1$
$24$ $5$ $(1,2,3,4,5)$ $0$
$20$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.