Properties

Label 5.13799e3.6t14.1c1
Dimension 5
Group $S_5$
Conductor $ 13799^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$2627500721399= 13799^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - x^{3} + 2 x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Odd
Determinant: 1.13799.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 9 + 49\cdot 97 + 11\cdot 97^{2} + 74\cdot 97^{3} + 15\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 + 60\cdot 97 + 4\cdot 97^{2} + 48\cdot 97^{3} + 18\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 48 + 83\cdot 97 + 17\cdot 97^{2} + 51\cdot 97^{3} + 78\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 59 + 74\cdot 97 + 11\cdot 97^{2} + 51\cdot 97^{3} + 86\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 63 + 23\cdot 97 + 51\cdot 97^{2} + 66\cdot 97^{3} + 91\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$-1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.