Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{2} + 96 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 5 + 91\cdot 97 + 75\cdot 97^{2} + 36\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 66 a + 3 + \left(28 a + 43\right)\cdot 97 + \left(16 a + 75\right)\cdot 97^{2} + \left(70 a + 66\right)\cdot 97^{3} + \left(26 a + 34\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 31 + 12\cdot 97 + 72\cdot 97^{2} + 47\cdot 97^{3} + 92\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 87 a + 31 a\cdot 97 + \left(a + 66\right)\cdot 97^{2} + \left(54 a + 49\right)\cdot 97^{3} + \left(71 a + 59\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 10 a + 87 + \left(65 a + 41\right)\cdot 97 + \left(95 a + 35\right)\cdot 97^{2} + \left(42 a + 5\right)\cdot 97^{3} + \left(25 a + 77\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 31 a + 69 + \left(68 a + 5\right)\cdot 97 + \left(80 a + 63\right)\cdot 97^{2} + \left(26 a + 23\right)\cdot 97^{3} + \left(70 a + 88\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $5$ |
| $15$ | $2$ | $(1,2)(3,4)(5,6)$ | $-1$ |
| $15$ | $2$ | $(1,2)$ | $3$ |
| $45$ | $2$ | $(1,2)(3,4)$ | $1$ |
| $40$ | $3$ | $(1,2,3)(4,5,6)$ | $-1$ |
| $40$ | $3$ | $(1,2,3)$ | $2$ |
| $90$ | $4$ | $(1,2,3,4)(5,6)$ | $-1$ |
| $90$ | $4$ | $(1,2,3,4)$ | $1$ |
| $144$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $120$ | $6$ | $(1,2,3,4,5,6)$ | $-1$ |
| $120$ | $6$ | $(1,2,3)(4,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.