Properties

Label 5.11e3_719e3.6t14.1c1
Dimension 5
Group $S_5$
Conductor $ 11^{3} \cdot 719^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$494725990429= 11^{3} \cdot 719^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 2 x^{3} - 2 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Even
Determinant: 1.11_719.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 49 + 54\cdot 71 + 6\cdot 71^{2} + 21\cdot 71^{3} + 27\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 57 a + 35 + \left(47 a + 50\right)\cdot 71 + \left(37 a + 37\right)\cdot 71^{2} + \left(62 a + 29\right)\cdot 71^{3} + \left(42 a + 10\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 37 + 49\cdot 71 + 3\cdot 71^{2} + 32\cdot 71^{3} + 53\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 16 + 40\cdot 71 + 28\cdot 71^{2} + 13\cdot 71^{3} + 17\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 a + 7 + \left(23 a + 18\right)\cdot 71 + \left(33 a + 65\right)\cdot 71^{2} + \left(8 a + 45\right)\cdot 71^{3} + \left(28 a + 33\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$-1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.