Properties

Label 5.494725990429.6t14.a.a
Dimension $5$
Group $S_5$
Conductor $494725990429$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $5$
Group: $S_5$
Conductor: \(494725990429\)\(\medspace = 11^{3} \cdot 719^{3} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 5.1.7909.1
Galois orbit size: $1$
Smallest permutation container: $\PGL(2,5)$
Parity: even
Determinant: 1.7909.2t1.a.a
Projective image: $S_5$
Projective stem field: Galois closure of 5.1.7909.1

Defining polynomial

$f(x)$$=$ \( x^{5} - 2x^{4} + 2x^{3} - 2x^{2} + x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: \( x^{2} + 69x + 7 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 49 + 54\cdot 71 + 6\cdot 71^{2} + 21\cdot 71^{3} + 27\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 57 a + 35 + \left(47 a + 50\right)\cdot 71 + \left(37 a + 37\right)\cdot 71^{2} + \left(62 a + 29\right)\cdot 71^{3} + \left(42 a + 10\right)\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 37 + 49\cdot 71 + 3\cdot 71^{2} + 32\cdot 71^{3} + 53\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 16 + 40\cdot 71 + 28\cdot 71^{2} + 13\cdot 71^{3} + 17\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 14 a + 7 + \left(23 a + 18\right)\cdot 71 + \left(33 a + 65\right)\cdot 71^{2} + \left(8 a + 45\right)\cdot 71^{3} + \left(28 a + 33\right)\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character valueComplex conjugation
$1$$1$$()$$5$
$10$$2$$(1,2)$$-1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$-1$