Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 467 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 103 + 452\cdot 467 + 304\cdot 467^{2} + 160\cdot 467^{3} + 237\cdot 467^{4} +O\left(467^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 209 + 205\cdot 467 + 99\cdot 467^{2} + 299\cdot 467^{3} + 120\cdot 467^{4} +O\left(467^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 256 + 414\cdot 467 + 251\cdot 467^{2} + 329\cdot 467^{3} + 236\cdot 467^{4} +O\left(467^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 397 + 338\cdot 467 + 360\cdot 467^{2} + 288\cdot 467^{3} + 198\cdot 467^{4} +O\left(467^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 437 + 456\cdot 467 + 383\cdot 467^{2} + 322\cdot 467^{3} + 140\cdot 467^{4} +O\left(467^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $5$ |
| $10$ | $2$ | $(1,2)$ | $-1$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $1$ |
| $20$ | $3$ | $(1,2,3)$ | $-1$ |
| $30$ | $4$ | $(1,2,3,4)$ | $1$ |
| $24$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $20$ | $6$ | $(1,2,3)(4,5)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.