Properties

Label 5.11e3_29e3_373e3.6t16.1c1
Dimension 5
Group $S_6$
Conductor $ 11^{3} \cdot 29^{3} \cdot 373^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$1684606781330803= 11^{3} \cdot 29^{3} \cdot 373^{3} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 4 x^{3} - 2 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_6$
Parity: Odd
Determinant: 1.11_29_373.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 103 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 103 }$: $ x^{2} + 102 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 67 + 68\cdot 103 + 77\cdot 103^{2} + 99\cdot 103^{3} + 14\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 46 a + 64 + \left(83 a + 46\right)\cdot 103 + \left(84 a + 32\right)\cdot 103^{2} + \left(8 a + 39\right)\cdot 103^{3} + \left(18 a + 71\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 99 + 95\cdot 103 + 15\cdot 103^{2} + 6\cdot 103^{3} + 69\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 8 a + 84 + \left(89 a + 17\right)\cdot 103 + \left(85 a + 76\right)\cdot 103^{2} + \left(81 a + 50\right)\cdot 103^{3} + \left(7 a + 73\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 57 a + 7 + \left(19 a + 84\right)\cdot 103 + \left(18 a + 33\right)\cdot 103^{2} + \left(94 a + 66\right)\cdot 103^{3} + \left(84 a + 80\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 95 a + 92 + \left(13 a + 98\right)\cdot 103 + \left(17 a + 72\right)\cdot 103^{2} + \left(21 a + 46\right)\cdot 103^{3} + \left(95 a + 102\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)(5,6)$$3$
$15$$2$$(1,2)$$-1$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$2$
$40$$3$$(1,2,3)$$-1$
$90$$4$$(1,2,3,4)(5,6)$$-1$
$90$$4$$(1,2,3,4)$$1$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$0$
$120$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.