Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 97 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 12 + 45\cdot 97 + 5\cdot 97^{2} + 69\cdot 97^{3} + 59\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 47 + 66\cdot 97 + 53\cdot 97^{2} + 73\cdot 97^{3} + 24\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 74 + 91\cdot 97 + 23\cdot 97^{2} + 38\cdot 97^{3} + 70\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 79 + 47\cdot 97 + 69\cdot 97^{2} + 53\cdot 97^{3} + 55\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 80 + 39\cdot 97 + 41\cdot 97^{2} + 56\cdot 97^{3} + 80\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $5$ |
| $10$ | $2$ | $(1,2)$ | $1$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $1$ |
| $20$ | $3$ | $(1,2,3)$ | $-1$ |
| $30$ | $4$ | $(1,2,3,4)$ | $-1$ |
| $24$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $20$ | $6$ | $(1,2,3)(4,5)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.