Properties

Label 5.1134389e4.12t183.1
Dimension 5
Group $S_6$
Conductor $ 1134389^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$1655953076261740663829041= 1134389^{4} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 4 x^{4} + 6 x^{3} + 4 x^{2} - 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T183
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 101 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 101 }$: $ x^{2} + 97 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 44 a + 25 + \left(96 a + 16\right)\cdot 101 + \left(20 a + 9\right)\cdot 101^{2} + \left(3 a + 83\right)\cdot 101^{3} + \left(54 a + 2\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 57 a + 100 + \left(4 a + 54\right)\cdot 101 + \left(80 a + 97\right)\cdot 101^{2} + \left(97 a + 74\right)\cdot 101^{3} + \left(46 a + 13\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 52 a + 96 + \left(63 a + 80\right)\cdot 101 + \left(50 a + 99\right)\cdot 101^{2} + \left(16 a + 4\right)\cdot 101^{3} + \left(36 a + 81\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 21 + 28\cdot 101 + 50\cdot 101^{2} + 16\cdot 101^{3} + 24\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 62 + 41\cdot 101 + 9\cdot 101^{2} + 2\cdot 101^{3} + 73\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 49 a + 1 + \left(37 a + 81\right)\cdot 101 + \left(50 a + 36\right)\cdot 101^{2} + \left(84 a + 20\right)\cdot 101^{3} + \left(64 a + 7\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)(5,6)$ $1$
$15$ $2$ $(1,2)$ $-3$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $-1$
$40$ $3$ $(1,2,3)$ $2$
$90$ $4$ $(1,2,3,4)(5,6)$ $-1$
$90$ $4$ $(1,2,3,4)$ $-1$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $1$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.