Properties

Label 5.1061e2.6t12.1c1
Dimension 5
Group $A_5$
Conductor $ 1061^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$A_5$
Conductor:$1125721= 1061^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 4 x^{3} + 15 x^{2} + 32 x + 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,5)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 19 a + 10 + \left(14 a + 13\right)\cdot 31 + \left(20 a + 8\right)\cdot 31^{2} + \left(30 a + 6\right)\cdot 31^{3} + \left(28 a + 2\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 17 + \left(16 a + 23\right)\cdot 31 + \left(10 a + 3\right)\cdot 31^{2} + 16\cdot 31^{3} + \left(2 a + 29\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 a + 20 + 23\cdot 31 + \left(25 a + 5\right)\cdot 31^{2} + \left(12 a + 2\right)\cdot 31^{3} + \left(30 a + 17\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 a + 14 + \left(30 a + 28\right)\cdot 31 + \left(5 a + 23\right)\cdot 31^{2} + \left(18 a + 2\right)\cdot 31^{3} + 3\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 2 + 4\cdot 31 + 20\cdot 31^{2} + 3\cdot 31^{3} + 10\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$12$$5$$(1,2,3,4,5)$$0$
$12$$5$$(1,3,4,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.