Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 563 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 33 + 208\cdot 563 + 332\cdot 563^{2} + 389\cdot 563^{3} + 74\cdot 563^{4} +O\left(563^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 360 + 91\cdot 563 + 108\cdot 563^{2} + 190\cdot 563^{3} + 235\cdot 563^{4} +O\left(563^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 363 + 532\cdot 563 + 519\cdot 563^{2} + 379\cdot 563^{3} + 19\cdot 563^{4} +O\left(563^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 434 + 492\cdot 563 + 53\cdot 563^{2} + 293\cdot 563^{3} + 409\cdot 563^{4} +O\left(563^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 499 + 363\cdot 563 + 111\cdot 563^{2} + 436\cdot 563^{3} + 386\cdot 563^{4} +O\left(563^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $10$ | $2$ | $(1,2)$ | $2$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $20$ | $3$ | $(1,2,3)$ | $1$ |
| $30$ | $4$ | $(1,2,3,4)$ | $0$ |
| $24$ | $5$ | $(1,2,3,4,5)$ | $-1$ |
| $20$ | $6$ | $(1,2,3)(4,5)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.