Properties

Label 4.81509e3.10t12.1
Dimension 4
Group $S_5$
Conductor $ 81509^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$541522735555229= 81509^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 5 x^{3} + 3 x^{2} + 5 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 21 + 25\cdot 47 + 5\cdot 47^{2} + 25\cdot 47^{3} + 6\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 16 + \left(35 a + 1\right)\cdot 47 + \left(39 a + 28\right)\cdot 47^{2} + \left(35 a + 22\right)\cdot 47^{3} + \left(8 a + 2\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 22 + 5\cdot 47 + 33\cdot 47^{2} + 9\cdot 47^{3} + 29\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 16 + 39\cdot 47 + 47^{2} + 29\cdot 47^{3} + 24\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 45 a + 20 + \left(11 a + 22\right)\cdot 47 + \left(7 a + 25\right)\cdot 47^{2} + \left(11 a + 7\right)\cdot 47^{3} + \left(38 a + 31\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)$ $-2$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $-1$
$20$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.