Properties

Label 4.7e3_977e2.12t34.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 7^{3} \cdot 977^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$327403447= 7^{3} \cdot 977^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 5 x^{4} - 3 x^{3} - x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Odd
Determinant: 1.7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 + 17\cdot 29 + 7\cdot 29^{2} + 9\cdot 29^{3} + 21\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 7 + \left(8 a + 2\right)\cdot 29 + \left(19 a + 21\right)\cdot 29^{2} + \left(2 a + 18\right)\cdot 29^{3} + \left(26 a + 9\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 3 + 18\cdot 29 + 15\cdot 29^{2} + 11\cdot 29^{3} + 3\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 a + \left(28 a + 26\right)\cdot 29 + \left(22 a + 24\right)\cdot 29^{2} + \left(4 a + 16\right)\cdot 29^{3} + \left(16 a + 6\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 19 a + 28 + \left(20 a + 4\right)\cdot 29 + \left(9 a + 22\right)\cdot 29^{2} + \left(26 a + 12\right)\cdot 29^{3} + \left(2 a + 21\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 26 a + 15 + 18\cdot 29 + \left(6 a + 24\right)\cdot 29^{2} + \left(24 a + 17\right)\cdot 29^{3} + \left(12 a + 24\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,3)$
$(2,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$-2$
$6$$2$$(3,5)$$0$
$9$$2$$(3,5)(4,6)$$0$
$4$$3$$(1,4,6)(2,3,5)$$1$
$4$$3$$(1,4,6)$$-2$
$18$$4$$(1,2)(3,6,5,4)$$0$
$12$$6$$(1,3,4,5,6,2)$$1$
$12$$6$$(1,4,6)(3,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.