Properties

Label 4.7e3_139e2.10t12.2c1
Dimension 4
Group $\PGL(2,5)$
Conductor $ 7^{3} \cdot 139^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\PGL(2,5)$
Conductor:$6627103= 7^{3} \cdot 139^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 8 x^{3} + 21 x^{2} - 8 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd
Determinant: 1.7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 9 + 64\cdot 79 + 9\cdot 79^{2} + 45\cdot 79^{3} + 74\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 47 a + 45 + \left(33 a + 9\right)\cdot 79 + \left(78 a + 50\right)\cdot 79^{2} + \left(51 a + 8\right)\cdot 79^{3} + \left(41 a + 56\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 32 a + 13 + \left(45 a + 75\right)\cdot 79 + 15\cdot 79^{2} + \left(27 a + 61\right)\cdot 79^{3} + \left(37 a + 45\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 63 a + 69 + \left(34 a + 3\right)\cdot 79 + \left(26 a + 30\right)\cdot 79^{2} + \left(37 a + 17\right)\cdot 79^{3} + 46\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 50 + 29\cdot 79 + 30\cdot 79^{2} + 76\cdot 79^{3} + 4\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 16 a + 53 + \left(44 a + 54\right)\cdot 79 + \left(52 a + 21\right)\cdot 79^{2} + \left(41 a + 28\right)\cdot 79^{3} + \left(78 a + 9\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,3)(5,6)$
$(1,3,4,2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,4)(2,3)(5,6)$$-2$
$15$$2$$(2,4)(5,6)$$0$
$20$$3$$(1,4,5)(2,6,3)$$1$
$30$$4$$(2,5,4,6)$$0$
$24$$5$$(1,3,4,6,2)$$-1$
$20$$6$$(1,3,4,2,5,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.