Properties

Label 4.7e3_1217e3.10t12.1c1
Dimension 4
Group $S_5$
Conductor $ 7^{3} \cdot 1217^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$618252462359= 7^{3} \cdot 1217^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd
Determinant: 1.7_1217.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 6 a + 13 + \left(10 a + 17\right)\cdot 43 + 27\cdot 43^{2} + \left(26 a + 2\right)\cdot 43^{3} + \left(2 a + 6\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 a + 5 + \left(9 a + 10\right)\cdot 43 + \left(33 a + 12\right)\cdot 43^{2} + \left(22 a + 32\right)\cdot 43^{3} + \left(24 a + 11\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 15 + 4\cdot 43 + 36\cdot 43^{2} + 29\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 13 a + 35 + \left(33 a + 32\right)\cdot 43 + \left(9 a + 35\right)\cdot 43^{2} + \left(20 a + 21\right)\cdot 43^{3} + \left(18 a + 13\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 37 a + 19 + \left(32 a + 21\right)\cdot 43 + \left(42 a + 17\right)\cdot 43^{2} + \left(16 a + 28\right)\cdot 43^{3} + \left(40 a + 25\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$-2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.