Properties

Label 4.7e2_977e3.12t34.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 7^{2} \cdot 977^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$45696166817= 7^{2} \cdot 977^{3} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + x^{4} - 31 x^{3} + 31 x^{2} - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even
Determinant: 1.977.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 26\cdot 29 + 17\cdot 29^{2} + 20\cdot 29^{3} + 9\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 + 12\cdot 29 + 26\cdot 29^{2} + 6\cdot 29^{3} + 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 a + 5 + \left(16 a + 7\right)\cdot 29 + \left(2 a + 3\right)\cdot 29^{2} + \left(14 a + 6\right)\cdot 29^{3} + \left(22 a + 8\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 24 a + 11 + 16 a\cdot 29 + \left(24 a + 25\right)\cdot 29^{2} + 28\cdot 29^{3} + \left(a + 21\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 a + 9 + \left(12 a + 9\right)\cdot 29 + \left(26 a + 28\right)\cdot 29^{2} + \left(14 a + 15\right)\cdot 29^{3} + \left(6 a + 19\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 15 + \left(12 a + 2\right)\cdot 29 + \left(4 a + 15\right)\cdot 29^{2} + \left(28 a + 8\right)\cdot 29^{3} + \left(27 a + 26\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,3)$
$(2,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$-2$
$6$$2$$(2,3)$$0$
$9$$2$$(1,4)(2,3)$$0$
$4$$3$$(1,4,6)(2,3,5)$$1$
$4$$3$$(1,4,6)$$-2$
$18$$4$$(1,2,4,3)(5,6)$$0$
$12$$6$$(1,3,4,5,6,2)$$1$
$12$$6$$(1,4,6)(2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.