Properties

Label 4.7e2_557e2.8t23.3
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 7^{2} \cdot 557^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$15202201= 7^{2} \cdot 557^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 4 x^{6} + 2 x^{5} + 19 x^{4} + 3 x^{3} - 62 x^{2} + 77 x - 35 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 5 + 3\cdot 23 + 4\cdot 23^{2} + 17\cdot 23^{3} + 14\cdot 23^{4} +O\left(23^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 20 a + 18 + \left(2 a + 1\right)\cdot 23 + \left(14 a + 20\right)\cdot 23^{2} + \left(10 a + 22\right)\cdot 23^{3} + \left(3 a + 15\right)\cdot 23^{4} + \left(2 a + 19\right)\cdot 23^{5} + \left(a + 20\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 13 + \left(8 a + 20\right)\cdot 23 + \left(14 a + 15\right)\cdot 23^{2} + \left(9 a + 15\right)\cdot 23^{3} + \left(5 a + 21\right)\cdot 23^{4} + \left(2 a + 6\right)\cdot 23^{5} + \left(12 a + 21\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 22 + 20\cdot 23 + 10\cdot 23^{2} + 7\cdot 23^{3} + 5\cdot 23^{5} + 21\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 2 + \left(2 a + 4\right)\cdot 23 + \left(2 a + 13\right)\cdot 23^{2} + \left(8 a + 16\right)\cdot 23^{3} + \left(14 a + 14\right)\cdot 23^{4} + \left(22 a + 12\right)\cdot 23^{5} + \left(6 a + 9\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 5 + \left(20 a + 19\right)\cdot 23 + \left(20 a + 14\right)\cdot 23^{2} + \left(14 a + 7\right)\cdot 23^{3} + \left(8 a + 12\right)\cdot 23^{4} + 20\cdot 23^{5} + 16 a\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 3 a + 12 + \left(20 a + 10\right)\cdot 23 + \left(8 a + 22\right)\cdot 23^{2} + \left(12 a + 6\right)\cdot 23^{3} + \left(19 a + 12\right)\cdot 23^{4} + \left(20 a + 20\right)\cdot 23^{5} + \left(21 a + 20\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 21 a + 17 + \left(14 a + 11\right)\cdot 23 + \left(8 a + 13\right)\cdot 23^{2} + \left(13 a + 20\right)\cdot 23^{3} + \left(17 a + 22\right)\cdot 23^{4} + \left(20 a + 5\right)\cdot 23^{5} + \left(10 a + 20\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,6)(2,3,4)$
$(1,3,4,6)(2,5,7,8)$
$(1,2)(3,6)(4,7)$
$(1,4)(2,7)(3,6)(5,8)$
$(1,7,4,2)(3,5,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,4)(2,7)(3,6)(5,8)$ $-4$
$12$ $2$ $(1,2)(3,6)(4,7)$ $0$
$8$ $3$ $(1,8,3)(4,5,6)$ $1$
$6$ $4$ $(1,7,4,2)(3,5,6,8)$ $0$
$8$ $6$ $(1,6,8,4,3,5)(2,7)$ $-1$
$6$ $8$ $(1,5,7,6,4,8,2,3)$ $0$
$6$ $8$ $(1,8,7,3,4,5,2,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.