Properties

Label 4.7e2_47e2.8t23.2c1
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 7^{2} \cdot 47^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$108241= 7^{2} \cdot 47^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 12 x^{6} - 22 x^{5} + 32 x^{4} - 32 x^{3} + 8 x^{2} + 5 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 4\cdot 13 + 8\cdot 13^{2} + 12\cdot 13^{3} + 7\cdot 13^{4} + 10\cdot 13^{5} + 7\cdot 13^{6} + 4\cdot 13^{7} + 11\cdot 13^{8} + 5\cdot 13^{9} + 7\cdot 13^{10} + 5\cdot 13^{11} +O\left(13^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 5 + 3 a\cdot 13 + \left(9 a + 10\right)\cdot 13^{2} + \left(10 a + 5\right)\cdot 13^{3} + \left(7 a + 1\right)\cdot 13^{4} + \left(10 a + 5\right)\cdot 13^{5} + \left(4 a + 9\right)\cdot 13^{6} + \left(8 a + 4\right)\cdot 13^{7} + \left(4 a + 8\right)\cdot 13^{8} + \left(2 a + 7\right)\cdot 13^{9} + \left(2 a + 6\right)\cdot 13^{10} + \left(2 a + 6\right)\cdot 13^{11} +O\left(13^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 9 + \left(9 a + 12\right)\cdot 13 + \left(3 a + 2\right)\cdot 13^{2} + \left(2 a + 7\right)\cdot 13^{3} + \left(5 a + 11\right)\cdot 13^{4} + \left(2 a + 7\right)\cdot 13^{5} + \left(8 a + 3\right)\cdot 13^{6} + \left(4 a + 8\right)\cdot 13^{7} + \left(8 a + 4\right)\cdot 13^{8} + \left(10 a + 5\right)\cdot 13^{9} + \left(10 a + 6\right)\cdot 13^{10} + \left(10 a + 6\right)\cdot 13^{11} +O\left(13^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 6 + \left(5 a + 1\right)\cdot 13 + \left(5 a + 3\right)\cdot 13^{2} + 8 a\cdot 13^{3} + \left(4 a + 9\right)\cdot 13^{4} + \left(10 a + 7\right)\cdot 13^{5} + \left(8 a + 12\right)\cdot 13^{6} + 10\cdot 13^{7} + \left(4 a + 8\right)\cdot 13^{8} + 6\cdot 13^{9} + \left(a + 12\right)\cdot 13^{10} + \left(5 a + 7\right)\cdot 13^{11} +O\left(13^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 12 + 8\cdot 13 + 4\cdot 13^{2} + 5\cdot 13^{4} + 2\cdot 13^{5} + 5\cdot 13^{6} + 8\cdot 13^{7} + 13^{8} + 7\cdot 13^{9} + 5\cdot 13^{10} + 7\cdot 13^{11} +O\left(13^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 10 + \left(7 a + 2\right)\cdot 13 + \left(7 a + 3\right)\cdot 13^{2} + \left(4 a + 3\right)\cdot 13^{3} + \left(8 a + 5\right)\cdot 13^{4} + 2 a\cdot 13^{5} + \left(4 a + 11\right)\cdot 13^{6} + \left(12 a + 2\right)\cdot 13^{7} + \left(8 a + 12\right)\cdot 13^{8} + \left(12 a + 2\right)\cdot 13^{9} + 11 a\cdot 13^{10} + \left(7 a + 12\right)\cdot 13^{11} +O\left(13^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 9 a + 8 + \left(7 a + 11\right)\cdot 13 + \left(7 a + 9\right)\cdot 13^{2} + \left(4 a + 12\right)\cdot 13^{3} + \left(8 a + 3\right)\cdot 13^{4} + \left(2 a + 5\right)\cdot 13^{5} + 4 a\cdot 13^{6} + \left(12 a + 2\right)\cdot 13^{7} + \left(8 a + 4\right)\cdot 13^{8} + \left(12 a + 6\right)\cdot 13^{9} + 11 a\cdot 13^{10} + \left(7 a + 5\right)\cdot 13^{11} +O\left(13^{ 12 }\right)$
$r_{ 8 }$ $=$ $ 4 a + 4 + \left(5 a + 10\right)\cdot 13 + \left(5 a + 9\right)\cdot 13^{2} + \left(8 a + 9\right)\cdot 13^{3} + \left(4 a + 7\right)\cdot 13^{4} + \left(10 a + 12\right)\cdot 13^{5} + \left(8 a + 1\right)\cdot 13^{6} + 10\cdot 13^{7} + 4 a\cdot 13^{8} + 10\cdot 13^{9} + \left(a + 12\right)\cdot 13^{10} + 5 a\cdot 13^{11} +O\left(13^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(2,3)(4,7)(6,8)$
$(1,6,5,8)(2,7,3,4)$
$(2,8,4)(3,6,7)$
$(1,3,5,2)(4,6,7,8)$
$(2,3)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,5)(2,3)(4,7)(6,8)$$-4$
$12$$2$$(2,3)(4,6)(7,8)$$0$
$8$$3$$(1,6,4)(5,8,7)$$1$
$6$$4$$(1,6,5,8)(2,7,3,4)$$0$
$8$$6$$(1,7,6,5,4,8)(2,3)$$-1$
$6$$8$$(1,4,3,6,5,7,2,8)$$0$
$6$$8$$(1,7,3,8,5,4,2,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.