Properties

Label 4.7e2_29e3.6t10.2
Dimension 4
Group $C_3^2:C_4$
Conductor $ 7^{2} \cdot 29^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:C_4$
Conductor:$1195061= 7^{2} \cdot 29^{3} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 6 x^{4} + 20 x^{2} + 11 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 20.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 5\cdot 13 + 13^{2} + 2\cdot 13^{3} + 11\cdot 13^{4} + 5\cdot 13^{5} + 6\cdot 13^{6} + 2\cdot 13^{7} + 3\cdot 13^{8} + 13^{9} + 2\cdot 13^{10} + 12\cdot 13^{11} + 2\cdot 13^{12} + 3\cdot 13^{13} + 4\cdot 13^{14} + 10\cdot 13^{15} + 3\cdot 13^{17} + 10\cdot 13^{18} + 7\cdot 13^{19} +O\left(13^{ 20 }\right)$
$r_{ 2 }$ $=$ $ 11 a + 4 + \left(8 a + 6\right)\cdot 13 + \left(7 a + 10\right)\cdot 13^{2} + \left(9 a + 10\right)\cdot 13^{3} + \left(2 a + 12\right)\cdot 13^{4} + \left(5 a + 10\right)\cdot 13^{5} + \left(a + 5\right)\cdot 13^{6} + \left(5 a + 1\right)\cdot 13^{7} + \left(6 a + 3\right)\cdot 13^{8} + \left(5 a + 5\right)\cdot 13^{9} + \left(2 a + 5\right)\cdot 13^{10} + \left(8 a + 4\right)\cdot 13^{11} + 2\cdot 13^{12} + \left(10 a + 8\right)\cdot 13^{13} + \left(3 a + 9\right)\cdot 13^{14} + 13^{15} + \left(2 a + 11\right)\cdot 13^{16} + \left(11 a + 9\right)\cdot 13^{17} + \left(6 a + 2\right)\cdot 13^{18} + \left(3 a + 9\right)\cdot 13^{19} +O\left(13^{ 20 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 2 + \left(4 a + 4\right)\cdot 13 + \left(5 a + 9\right)\cdot 13^{2} + \left(3 a + 12\right)\cdot 13^{3} + \left(10 a + 5\right)\cdot 13^{4} + 7 a\cdot 13^{5} + \left(11 a + 2\right)\cdot 13^{6} + \left(7 a + 5\right)\cdot 13^{7} + \left(6 a + 4\right)\cdot 13^{8} + \left(7 a + 4\right)\cdot 13^{9} + \left(10 a + 2\right)\cdot 13^{10} + \left(4 a + 10\right)\cdot 13^{11} + \left(12 a + 7\right)\cdot 13^{12} + \left(2 a + 4\right)\cdot 13^{13} + \left(9 a + 3\right)\cdot 13^{14} + \left(12 a + 11\right)\cdot 13^{15} + \left(10 a + 12\right)\cdot 13^{16} + \left(a + 5\right)\cdot 13^{17} + \left(6 a + 11\right)\cdot 13^{18} + \left(9 a + 5\right)\cdot 13^{19} +O\left(13^{ 20 }\right)$
$r_{ 4 }$ $=$ $ 5 + 10\cdot 13 + 2\cdot 13^{2} + 12\cdot 13^{4} + 7\cdot 13^{5} + 4\cdot 13^{6} + 13^{7} + 4\cdot 13^{8} + 4\cdot 13^{9} + 3\cdot 13^{10} + 13^{11} + 6\cdot 13^{13} + 11\cdot 13^{14} + 10\cdot 13^{15} + 9\cdot 13^{16} + 7\cdot 13^{17} + 12\cdot 13^{18} + 5\cdot 13^{19} +O\left(13^{ 20 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 3 + \left(a + 3\right)\cdot 13 + \left(9 a + 10\right)\cdot 13^{2} + \left(8 a + 6\right)\cdot 13^{3} + 4 a\cdot 13^{4} + \left(4 a + 7\right)\cdot 13^{5} + \left(2 a + 4\right)\cdot 13^{6} + \left(a + 8\right)\cdot 13^{7} + \left(6 a + 9\right)\cdot 13^{8} + \left(9 a + 3\right)\cdot 13^{9} + 4\cdot 13^{10} + \left(5 a + 3\right)\cdot 13^{11} + \left(9 a + 4\right)\cdot 13^{12} + \left(a + 12\right)\cdot 13^{13} + 10 a\cdot 13^{14} + a\cdot 13^{15} + 3\cdot 13^{16} + \left(5 a + 10\right)\cdot 13^{17} + \left(11 a + 10\right)\cdot 13^{18} + 3\cdot 13^{19} +O\left(13^{ 20 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 11 + \left(11 a + 9\right)\cdot 13 + \left(3 a + 4\right)\cdot 13^{2} + \left(4 a + 6\right)\cdot 13^{3} + \left(8 a + 9\right)\cdot 13^{4} + \left(8 a + 6\right)\cdot 13^{5} + \left(10 a + 2\right)\cdot 13^{6} + \left(11 a + 7\right)\cdot 13^{7} + \left(6 a + 1\right)\cdot 13^{8} + \left(3 a + 7\right)\cdot 13^{9} + \left(12 a + 8\right)\cdot 13^{10} + \left(7 a + 7\right)\cdot 13^{11} + \left(3 a + 8\right)\cdot 13^{12} + \left(11 a + 4\right)\cdot 13^{13} + \left(2 a + 9\right)\cdot 13^{14} + \left(11 a + 4\right)\cdot 13^{15} + \left(12 a + 1\right)\cdot 13^{16} + \left(7 a + 2\right)\cdot 13^{17} + \left(a + 4\right)\cdot 13^{18} + \left(12 a + 6\right)\cdot 13^{19} +O\left(13^{ 20 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(4,5,6)$
$(1,2,3)$
$(1,4,2,5)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$9$ $2$ $(1,2)(4,5)$ $0$
$4$ $3$ $(1,2,3)$ $-2$
$4$ $3$ $(1,2,3)(4,5,6)$ $1$
$9$ $4$ $(1,4,2,5)(3,6)$ $0$
$9$ $4$ $(1,5,2,4)(3,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.