Properties

Label 4.7_317e2.6t13.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 7 \cdot 317^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$703423= 7 \cdot 317^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - x^{4} + 21 x^{3} - 18 x^{2} - 19 x + 11 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 21 a + 6 + \left(12 a + 7\right)\cdot 23 + \left(7 a + 1\right)\cdot 23^{2} + \left(22 a + 12\right)\cdot 23^{3} + \left(17 a + 2\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 + 4\cdot 23 + 10\cdot 23^{2} + 22\cdot 23^{3} + 22\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 2 + \left(10 a + 12\right)\cdot 23 + \left(15 a + 3\right)\cdot 23^{2} + 3\cdot 23^{3} + \left(5 a + 16\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 16 + 3\cdot 23 + 18\cdot 23^{2} + 7\cdot 23^{3} + 4\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 15 a + 18 + \left(8 a + 19\right)\cdot 23 + \left(7 a + 14\right)\cdot 23^{2} + \left(17 a + 9\right)\cdot 23^{3} + 19\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 8 a + 2 + \left(14 a + 22\right)\cdot 23 + \left(15 a + 20\right)\cdot 23^{2} + \left(5 a + 13\right)\cdot 23^{3} + \left(22 a + 3\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(2,5)$
$(2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,5)(4,6)$ $0$
$6$ $2$ $(1,3)$ $2$
$9$ $2$ $(1,3)(2,5)$ $0$
$4$ $3$ $(1,3,4)(2,5,6)$ $-2$
$4$ $3$ $(1,3,4)$ $1$
$18$ $4$ $(1,5,3,2)(4,6)$ $0$
$12$ $6$ $(1,5,3,6,4,2)$ $0$
$12$ $6$ $(1,3)(2,5,6)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.