Properties

Label 4.79e3_89e3.10t12.1
Dimension 4
Group $S_5$
Conductor $ 79^{3} \cdot 89^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$347577210791= 79^{3} \cdot 89^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{3} - x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 57 a + 50 + \left(35 a + 28\right)\cdot 59 + \left(49 a + 10\right)\cdot 59^{2} + \left(49 a + 53\right)\cdot 59^{3} + \left(17 a + 56\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 + 15\cdot 59 + 46\cdot 59^{2} + 53\cdot 59^{3} + 35\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 a + 47 + \left(52 a + 46\right)\cdot 59 + \left(45 a + 21\right)\cdot 59^{2} + \left(55 a + 3\right)\cdot 59^{3} + \left(57 a + 58\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 48 + \left(23 a + 7\right)\cdot 59 + \left(9 a + 24\right)\cdot 59^{2} + \left(9 a + 53\right)\cdot 59^{3} + \left(41 a + 24\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 38 a + 9 + \left(6 a + 19\right)\cdot 59 + \left(13 a + 15\right)\cdot 59^{2} + \left(3 a + 13\right)\cdot 59^{3} + \left(a + 1\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)$ $-2$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $-1$
$20$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.