Basic invariants
Dimension: | $4$ |
Group: | $S_5$ |
Conductor: | \(7367\)\(\medspace = 53 \cdot 139 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin number field: | Galois closure of 5.3.7367.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $S_5$ |
Parity: | odd |
Projective image: | $S_5$ |
Projective field: | Galois closure of 5.3.7367.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 277 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 5 + 154\cdot 277 + 271\cdot 277^{2} + 170\cdot 277^{3} + 206\cdot 277^{4} +O(277^{5})\) |
$r_{ 2 }$ | $=$ | \( 145 + 54\cdot 277 + 47\cdot 277^{2} + 208\cdot 277^{3} + 90\cdot 277^{4} +O(277^{5})\) |
$r_{ 3 }$ | $=$ | \( 184 + 269\cdot 277 + 242\cdot 277^{2} + 209\cdot 277^{3} + 31\cdot 277^{4} +O(277^{5})\) |
$r_{ 4 }$ | $=$ | \( 228 + 192\cdot 277 + 114\cdot 277^{2} + 122\cdot 277^{3} + 272\cdot 277^{4} +O(277^{5})\) |
$r_{ 5 }$ | $=$ | \( 271 + 159\cdot 277 + 154\cdot 277^{2} + 119\cdot 277^{3} + 229\cdot 277^{4} +O(277^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 5 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 5 }$ | Character values |
$c1$ | |||
$1$ | $1$ | $()$ | $4$ |
$10$ | $2$ | $(1,2)$ | $2$ |
$15$ | $2$ | $(1,2)(3,4)$ | $0$ |
$20$ | $3$ | $(1,2,3)$ | $1$ |
$30$ | $4$ | $(1,2,3,4)$ | $0$ |
$24$ | $5$ | $(1,2,3,4,5)$ | $-1$ |
$20$ | $6$ | $(1,2,3)(4,5)$ | $-1$ |