Properties

Label 4.71_281.5t5.1
Dimension 4
Group $S_5$
Conductor $ 71 \cdot 281 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$19951= 71 \cdot 281 $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + x^{3} - 3 x^{2} + 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 467 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 198 + 203\cdot 467 + 185\cdot 467^{2} + 314\cdot 467^{3} + 409\cdot 467^{4} +O\left(467^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 338 + 186\cdot 467 + 79\cdot 467^{2} + 398\cdot 467^{3} + 270\cdot 467^{4} +O\left(467^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 433 + 369\cdot 467 + 305\cdot 467^{2} + 344\cdot 467^{3} + 48\cdot 467^{4} +O\left(467^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 437 + 388\cdot 467 + 81\cdot 467^{2} + 126\cdot 467^{3} + 349\cdot 467^{4} +O\left(467^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 464 + 251\cdot 467 + 281\cdot 467^{2} + 217\cdot 467^{3} + 322\cdot 467^{4} +O\left(467^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)$ $2$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $-1$
$20$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.